Submanifolds with Parallel Mean Curvature Vector in Pinched Riemannian Manifolds
نویسندگان
چکیده
In this paper, we prove a generalized integral inequality for submanifolds with parallel mean curvature vector in an arbitrary Riemannian manifold, and from which we obtain a pinching theorem for compact oriented submanifolds with parallel mean curvature vector in a complete simply connected pinched Riemannian manifold, which generalizes the results obtained by Alencar-do Carmo and Hong-Wei Xu.
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملManifolds with Pointwise 1/4-pinched Curvature
In this lecture we will describe our recent joint work with SimonBrendle ([1], [2]) in which we give the differentiable classification ofcompact Riemannian manifolds with pointwise 1/4-pinched curvature.Our theorems are:Theorem 1. Let M be a compact Riemannian manifold with pointwise1/4-pinched curvature. Then M admits a metric of constant curvature,and therefore is ...
متن کامل